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Abstract 

Background The outbreak of the COVID-19 pandemic sparked numerous studies on policy options for managing 
public health emergencies, especially regarding how to choose the intensity of prevention and control to maintain 
a balance between economic development and disease prevention.

Methods We constructed a cost-benefit model of COVID-19 pandemic prevention and control policies based 
on an epidemic transmission model. On this basis, numerical simulations were performed for different economies 
to analyse the dynamic evolution of prevention and control policies. These economies include areas with high control 
costs, as seen in high-income economies, and areas with relatively low control costs, exhibited in upper-middle-
income economies.

Results The simulation results indicate that, at the outset of the COVID-19 pandemic, both high-and low-cost econo-
mies tended to enforce intensive interventions. However, as the virus evolved, particularly in circumstances with rela-
tively rates of reproduction, short incubation periods, short spans of infection and low mortality rates, high-cost 
economies became inclined to ease restrictions, while low-cost economies took the opposite approach. However, 
the consideration of additional costs incurred by the non-infected population means that a low-cost economy is likely 
to lift restrictions as well.

Conclusions This study concludes that variations in prevention and control policies among nations with varying 
income levels stem from variances in virus transmission characteristics, economic development, and control costs. 
This study can help researchers and policymakers better understand the differences in policy choice among vari-
ous economies as well as the changing trends of dynamic policy choices, thus providing a certain reference value 
for the policy direction of global public health emergencies.
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Introduction
Since 2020, the COVID-19 pandemic has had a seri-
ous impact on countries worldwide. More than three 
years have passed since the onset of the pandemic. 
Most economies are still recovering from the effects 
of COVID-19 and city lockdown [1, 2]. In recent years, 
there has been an alarming increase in the emergence 
of new infectious diseases worldwide [3], raising con-
cerns for future public health emergencies. Therefore, 
the management of such emergencies has become a 
critical issue.

Various measures have been implemented in response 
to emergencies such as COVID-19, including isola-
tion from the community, social distancing, reducing 
crowd, closing school, swift diagnosis, and contact trac-
ing [4–7]. These interventions fall into two categories: 
the blocking mode and the mitigation mode [8]. The 
former suggests that some countries have focused on 
paying short-term costs to avoid significant long-term 
health and economic losses. The mitigation approach 
acknowledges the belief held by some policy makers that 
complete eradication of COVID-19 may not be achiev-
able. While blocking strategies come at a high cost, their 
impact on the issue is minimal [7].

Numerous scholars have therefore conducted exten-
sive research on the most effective intervention pathways 
for control policies based on practical experience [9–11]. 
From an economic perspective, some scholars argue that 
the optimal control policy depends on the pandemic’s 
impact on healthcare resources and the populace [7]. 
Meanwhile, others emphasise that it is a balance between 
the impact on public health consequences and economic 
growth [12], or even a trade-off between value of health 
and the economic cost of implementing control policies 
[8, 13]. Essentially, a greater number of studies centre on 
the costs associated with pandemic prevention policies, 
with a reduced number of studies assessing health ben-
efits. However, when viewed from a health economics 
standpoint, conducting a cost-benefit analysis is a crucial 
stage in evaluating the efficiency of public health policy, 
and the benefits to health constitute integral factors of 
such analysis.

In addition, existing research has not delved into the 
issue of the dynamic choice of pandemic control inten-
sity. For example, existing studies have compared the 
cost-benefit gaps of different control strategies under 
specific reproduction numbers, or the health and eco-
nomic outcomes generated by different control strategies 
under different virus reproduction coefficient scenar-
ios [9]. However, firstly, the virus reproductive coeffi-
cients change during an epidemic; secondly, prevention 
and control policies need to be dynamically adapted to 
changes in virus characteristics; and thirdly, the costs 

of implementing prevention and control policies vary 
widely between economies.

To remedy this, the present study focuses on the 
dynamic choice model of epidemic prevention policies 
that include factors such as life-health value, virus trans-
mission characteristics, and economic cost of control 
policy. Given the complexity of social system, it is hard 
to estimate the impact of control policy in the short and 
medium term [14]. Therefore, modelling and simulat-
ing the COVID-19 pandemic is a relevant and beneficial 
way to understand the epidemiological impact of dis-
ease transmission and social distance interventions. This 
model and simulation can provide a theoretical basis and 
practical experience for the prevention of future major 
public health emergencies. However, it should be noted 
that the modelling in this study does not delve into the 
additional economic losses caused by the COVID-19 
pandemic, such as those resulting from business closures 
and reduced productivity. This is because our cost-ben-
efit model considers the health benefits by measuring 
economic losses against health losses. To avoid double 
counting, this is thus not discussed additionally.

This paper is structured as follows. First, we construct 
a COVID-19 transmission model, including isolation 
policies. Second, we construct a cost-benefit model for 
epidemic prevention within a given economy. Third, we 
simulate the dynamic path of optimal prevention poli-
cies based on disease characteristics and control costs. 
Finally, based on the results obtained, the paper is dis-
cussed and concluded.

Literature review
Research aimed at determining the most effective 
COVID-19 intervention policy can mainly be classified 
into two categories: first, measuring the costs of imple-
menting prevention and control policies; second, evalu-
ating the most appropriate intervention policies, and 
identifying the factors that need to be considered by 
governments.

Regarding the evaluation of intervention expenses, cur-
rent research predominantly analyses immediate medical 
costs such as nucleic acid testing and medical equipment. 
For example, Bartsch et al. [15] endeavoured to calculate 
resource consumption and direct medical expenses per 
symptomatic infection as well as on a national scale to 
comprehend the potential economic advantages of allevi-
ating the disease burden. The study found that a sympto-
matic case of COVID-19 could result in a median direct 
medical cost of $3,045. Another study calculated average 
treatment costs in Tehran; after evaluating 400 medical 
records, it was determined that the average treatment 
cost for COVID-19 was $1,434, with beds and drugs 
as the most important factors increasing the cost [16]. 
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Another study investigated how COVID-19 affects health 
and medical costs in China. It then estimated resource 
use and direct medical costs related to public health [17]. 
In terms of medical equipment costs, Kapinos et al. [18] 
compared N95 respirators with surgical masks based 
on typical surgical operations in the United States to 
estimate potential savings and avoid healthcare worker 
(HCW) COVID-19 infections. Their forecast results indi-
cated a reduction of approximately 11 HCW COVID-19 
cases per day, and each HCW would need to pay $0.64 
to balance the medical system’s profits and losses [18]. 
These studies offer a practical foundation for policymak-
ers and researchers to investigate the most effective pre-
vention and control policies. Additionally, they serve as a 
point of reference for this paper’s subsequent numerical 
simulations’ parameterization.

Regarding the choice of prevention and control poli-
cies, a number of scholars have comparatively analysed 
the advantages and disadvantages of different policies 
from an economic perspective. These policies include 
social isolation, nucleic acid testing, lockdowns, and 
so on. For example. Acemoglu et  al. [13] built a multi-
group SIR1 model to simulate the impaction of different 
policy types. They found that reducing social interac-
tions, increasing testing scales, and isolating infected 
populations can minimise economic losses and deaths. 
Nucleic acid testing has also been found to be a cost-
effective alternative to lockdown, making lockdown vir-
tually unnecessary [7]. Berger et  al. [19] posited that 
interventions such as nucleic acid testing (virology test-
ing and serological testing) can facilitate the relaxation of 
lockdown policies and thus support economic produc-
tion. A mixed integer nonlinear programming epidemic 
model has been developed by Biswas and Alfandari [20] 
to calculate the optimal sequence of non-medical inter-
ventions for three different lockdown length scenarios, 
taking into account the shortage of doctors and hospital 
beds in France [20].

Of the prevention and control measures mentioned 
above, lockdown is the most widely used by all coun-
tries and the most controversial, because it involves a 
trade-off between economic freedom and public health. 
Some studies initially discuss the need for policymakers 
to consider the impact of transmission rates [21], value 
of life [7], and implementation time [22] in their policy 
choices when balancing public health and socioeconom-
ics. In addition, Some scholars have maintained that the 
ultimate solution to the pandemic is to vaccinate a large 
number of people to achieve herd immunity. research 

has expanded the classic SIR model to find the best deci-
sion to balance economics and public health during the 
vaccine promotion process [23]. Consideration has also 
been given to the age structure of infection cases. Tar-
geted lockdown for different age groups was found to 
be a useful tool for significantly reducing the number of 
pandemic deaths and the economic costs of lockdown 
policies [13, 24].

The research findings present valuable insights for poli-
cymakers, but do not discuss the impact of factors such as 
differences in intervention costs between countries, other 
characteristics of the disease, the economic loss of health 
damage, and other factors. Given the diverse contagion 
characteristics of the disease and varying economic costs, 
we posit that viral evolution and intervention cost dispar-
ities will significantly impact policy decisions. Thus, our 
analysis focuses on the epidemic lockdown policy and 
how the optimal approach varies across different control 
cost levels, from a cost-benefit standpoint.

For the economic impact of health damage, we argue 
that the pandemic can result in greater economic losses 
in the absence of non-medical intervention measures. 
Such loss either stems from self-protective behaviour 
during the pandemic [25] or from psychological damage, 
a decreased quality of life, and a decline in work ability 
due to COVID-19 sequelae even after recovery [26]. For 
instance, patients who are on the path to recover from 
COVID-19 usually experience persistent symptoms such 
as respiratory distress, exhaustion, impaired sensory 
perception, cognitive issues, chest discomfort, and joint 
discomfort [27], along with enduring neurological con-
sequences [28]. In addition to this, the COVID-19 pan-
demic has caused many infection deaths, resulting in a 
complete loss of life and health for a certain proportion 
of the population. The human capital element of world 
economic growth will suffer significant and long-term 
losses, mainly manifested as labour losses, stagnation 
of schooling, and the disintegration of global trade and 
supply chains [29]. Therefore, in the construction of the 
cost-benefit model of COVID-19 governance, we further 
incorporate the value of life and health in infected cases 
and deaths, not only the value of life in fatal cases.

Methodology
According to existing research, there are various options 
for COVID-19 prevention and control policies. These 
include social distancing, tracking exposed populations, 
nucleic acid or antigen testing, social lockdowns, and 
isolation of infected populations. Countries around the 
world choose different policy combinations to manage 
public health emergencies. The differences in these epi-
demic control policy combinations ultimately manifest as 
differences in the intensity of social activity control. Thus, 

1 The simplest model of epidemic, consists of three compartments: 
susceptible(S), infected(I), recovered(R).
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research on the choice of COVID-19 prevention and con-
trol policies explores how to optimise the degree of con-
trol over social activities. Among the economic models 
for policy options, the major ones are cost benefit analy-
sis (CBA), cost effectiveness analysis (CEA), cost utility 
analysis (CUA), social return on investment (SROI), cost 
consequence analysis (CCA) [30, 31]. Among them, CBA 
can express costs and benefits in monetary terms, show-
ing decision makers a direct correlation between cost 
inputs and project outcomes. It is also able to calculate 
the net benefits to the economy and society as a whole, 
which can be used to assess whether or not a policy 
should be implemented in the whole society. Therefore, 
compared to other economic models, CBA will be more 
appropriate for the research objectives of this paper.

Our study constructs a cost-benefit analysis framework 
for the optimal policy based on the theory of epidemic 
economics and accounting for factors such as the sever-
ity of control and control costs. The framework is mainly 
based on a counterfactual study: The difference in epide-
miologic loss of life and cost of disease between policy 
interventions and no interventions is treated as a benefit 
of prevention and control, and the medical resources and 
economic losses of prevention and control are treated 
as costs. The difference between prevention and control 
benefits and costs is the net benefit. If the epidemiologi-
cal characteristics of the virus change (under conditions 
such as decreased mortality rate and increased infection 
rate), how would the intensity of control policies evolve 
to ensure the maximisation of net benefits?

Therefore, we first need to construct a dynamic model 
of COVID-19 epidemiology based on the epidemiologi-
cal characteristics of the virus and social activity control 
policies. We calculate the number of infections, quaran-
tined individuals, exposed individuals, and deaths with 
non-pharmacological interventions and no interventions, 
respectively. A cost-benefit model is then established 
based on these calculations. Finally, by setting different 
condition ranges, we simulate the intensity of control 
when the net benefit of the cost-benefit model is maxim-
ised to help us analyse the evolution of optimal control 
policies.

The SEQIRD model
Assumption 1
The populations involved in the transmission include 
susceptible (S), exposed (E), extra-quarantined (Q), 
infected (I), deceased (D), and recovered (R) individuals, 
where (1) the extra quarantined population (Q) mainly 
refers to the susceptible population who might have been 
in contact with the identified infected individuals, includ-
ing sub-close and general contacts. Q refers to those who 
have a chance of exposure but are not infected. For ease 

of simulation and calculation, we assume that those in 
the exposed population who become infected are quar-
antined for treatment and are not part of the extra-quar-
antined population. (2) The exposed population refers to 
those in close contact with the infected population, who 
will proportionally become infected. Due to the appli-
cation of big-data-based epidemiological tracing, close 
contacts can be accurately identified and isolated either 
by self-isolation or in specific locations. Therefore, even 
in the absence of strict containment policies, this group 
bears isolation costs and is not considered part of the 
extra-quarantined population. (3) The infected popula-
tion includes asymptomatic individuals, mild cases, and 
cases of moderate severity and above. (4) The recovered 
population includes those who recovered after infection 
and those who received the vaccine from the susceptible 
population.

The composition of the population at a certain period 
is as follows: Nt = St + Et + Qt + It + Rt + Dt. The flow 
between the different populations is shown in Fig. 1.

Assumption 2
According to existing research, current policy types can 
be divided into two categories based on the intensity of 
intervention and the degree of strictness of control over 
social activities: suppression policies aimed at eliminat-
ing the virus by lockdown or social distancing, and miti-
gation policies focused on flattening the curve [7]. Hence, 
this paper sets the intervention intensity as M, where M 
is in the range of [0,1]. If policymakers prefer to adopt 
mitigation policies, then M approaches zero. If policy-
makers prefer to implement strict control policies, then 
M approaches one.

Assumption 3
The virus transmission rate βt depends on the virus 
reproduction number Rt and the reciprocal of infection 
duration γ , βt = Rtγ [32]. This involves several param-
eters: (1) the virus reproduction number R0 is the basic 
reproduction number, which usually refers to the natural 
reproduction rate of the virus without policy control. The 
time-variant reproduction number Rt is affected by the 
strictness of control policies and vaccination. (2) γ is the 
average rate of recovery or death of the infected popula-
tion, which is the reciprocal of the infection period.

Assumption 4
Changes in the extra quarantined population depend on 
the quarantine release rate δ. When infection cases are 
identified, relevant authorities will quarantine susceptible 
people who may have come into contact with them. These 
extra quarantined, susceptible individuals can be classi-
fied into secondary contacts and general contacts. Close 
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contacts belong to the exposed group. The broader the def-
inition of close contacts in the policy, the higher the pro-
portion of the population that will be quarantined, which 
may even exceed the infected or exposed population. We 
assume that the quarantined population comes from the 
susceptible population, and the population outside quaran-
tine will produce new exposed and infected people based 
on the increase in the infected population. The main pur-
pose of quarantine is to decrease the rate at which suscep-
tible individuals become exposed and infected by reducing 
population mobility.

(1)dSt/dt = −βStIt −M ∗ �IEt

(2)dEt/dt = βStIt − �IEt

(3)dQt/dt = M ∗ �IEt − δQt

(4)dIt/dt = �IEt − �RIt − �DIt

(5)dR/dt = �RIt

The transmission rate between those six groups 
depends on virus epidemiological characteristics, con-
trol policies, and the degree of social distancing imple-
mentation [12]. Changes in the susceptible population 
St mainly include the emergence of exposed individuals 
( βStIt ), and the extra quarantine population ( M ∗ �IEt ) 
created based on the epidemiological investigation of the 
infected population. �I represents the rate of symptoms 
appearing in the exposed population or the patients who 
test positive in universal testing (these could be asympto-
matic patients, mild cases, or symptomatic individuals).

The severity of control measures directly affects the 
number of extra quarantined individuals. Under these 
policies, the direct exposure group consists of close con-
tacts who, if effectively identified, will be isolated. The 
primary group spreading the virus is the unidentified 
asymptomatic individuals within the exposed group. 
However, in stringent control policies, some countries 
also isolate susceptible individuals who may have been 
in contact with infected people indirectly. This mini-
mises the chance of the unidentified exposed population 

(6)dDt/dt = �DIt

Fig. 1 Population dynamics of the SEQIRD model
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spreading the virus. The size of this group typically 
directly correlates with the number of new infections 
�IEt , represented as M ∗ �IEt . If the control policy 
requires a broader range of contacts to be quarantined, 
such as spatial and temporal companions, the number of 
quarantined individuals could be one, two, or three times 
�IEt depending on the quarantine policy design. Under 
a policy of complete social relaxation where M = 0, the 
number of additional quarantined individuals would be 
zero.

According to the aforementioned epidemic model, this 
study calculates the cumulative number of infections, 
quarantines, and deaths over a specific period; this pro-
vides a foundation for subsequent simulations and analy-
ses of the cost-benefit of control policies.

The cost‑benefit model
The theoretical approach of economic epidemiology pro-
vides a fundamental framework for analysing epidemic 
control policies. In economic epidemiology, the cost-
benefit analysis of epidemic control includes two aspects: 
the costs of disease control and the benefits of disease 
eradication or control. The results of cost-benefit analysis 
therefore depend on the difference between policy bene-
fits and costs. Hence, the net benefits NV  of control poli-
cies can be expressed as the difference between the total 
benefits TBM and total costs TCM generated by epidemic 
control policies: NV = TBM − TCM.

Total health and economic benefits of pandemic control 
policy
The total benefit TBM refers to the potential losses avoided 
by control policies. These include the difference in health 
economic losses and disease costs of infected individuals 

(7)TET =

T

0
βStIt

(8)TQT =

∫ T

0
M ∗ �IEt

(9)TIT =

∫ T

0
�IEt

(10)TDT =

∫ T

0
�DIt

under both full freedom of movement and control states. 
The main reason for considering avoidable potential 
health economic losses as benefits is that COVID-19 
infection not only brings disease costs but also results in 
economic losses due to the depreciation of human capital 
(manifested as the reduction of quality-adjusted life years 
for infected individuals). Different policy choices have dif-
ferentiated impacts on human capital depreciation; this is 
also one of the key factors in our analysis of the cost-bene-
fits of COVID-19 governance models.

Where TDALY refers to the years of life lost due to 
death and illness from COVID-19 [33]. TDALY is an 
increasing function of infection rate and infection mor-
tality rate. The measurement unit is disability-adjusted 
life years (DALYs),2 which can be expressed as the sum 
of years of life lost (YLLs) and years lost due to disability 
(YLDs) among infected individuals [10].
(YLDs(TIt − TDt)+ YLLs ∗ TDt)M=0Yi  repre-

sents the health economic loss of the infected pop-
ulation under a state of complete non-control; 
(YLDs(TIt − TDt)+ YLLs ∗ TDt)M∈(0,1]Yi represents the 
health economic loss of all DALYs in the infected popu-
lation under some degree of control; Yi is the health eco-
nomic loss per person per DALY - the economic output 
corresponding to a year of life.3
(

TIM=0 − TIM∈(0,1]

)

CEi represents the epidemiologi-
cal cost that can be avoided after the implementation of 
control policies. Generally, the costs associated with an 
epidemic contain both epidemiological costs and excess 
burden. Epidemiological costs refer to the cost of treat-
ment, lost wages, and physical and mental suffering of 
the infected population. Excess burden refers to the costs 
related to disease prevention, such as self-protection and 
vaccination costs. Regarding excess burden, as long as the 
epidemic exists, regardless of control, vaccine costs and 
self-isolation costs will exist for each person. Therefore, 
in this formula, CEi only represents epidemiological costs. 
It should be noted that the infected population includes 
not only patients with different degrees of infection 
severity but also those who died after infection. Here, we 

(11)TBM =
(

TDALYM=0 − TDALYM∈(0,1]

)

Yi +
(

TIM=0 − TIM∈(0,1]

)

CEi

= (YLDs ∗ TRt + YLLs ∗ TDt)M=0Yi − (YLDs ∗ TRt + YLLs ∗ TDt)M∈(0,1]Yi +
(

TIM=0 − TIM∈(0,1]

)

CEi,

2 The reason for using Disability-Adjusted Life Years (DALYs) is that it 
includes both years of life lost due to premature death and years lived with 
disability. COVID-19 not only results in death and the loss of all human 
capital, but also causes partial loss of human capital due to illness and its 
aftermath.
3 Here, to simplify the analysis, we equate the value of each individual’s life 
and do not consider the impact of health inequality.
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do not distinguish the structure of epidemiological costs 
among the infected population.

Total intervention cost of pandemic control policy
The intervention cost of control policy ( TCM ) includes 
direct control costs and indirect costs brought about 
by control. Direct costs refer to the medical and social 
resources required for control social activity, such as 
additional isolation sites, medical staff, testing costs, 
medical observation, and so on. Indirect costs refer to 
the economic slowdown or stagnation brought about by 
control, such as economic losses caused by people being 
restricted from conducting productive activities. The 
expression is as follows:

where TQM∈(0,1] is the total number of people quaran-
tined during the pandemic, CQi is the per capita direct 
cost due to control policy, CWi is the per capita indi-
rect cost, and Days refers to work time loss because of 
quarantine.

Net value of pandemic control policy

s.t. Eqs. (1)–(10)
Based on Eqs.  (7)–(13), Eq.  (14) can be derived, in 

which the net benefit is expressed as a function of param-
eters such as infection rate, mortality rate, number of 
exposed people, and others. Cost estimation can be 
done without considering discounting. Given the rela-
tively short timeframe of the pandemic outbreak, a social 
discount rate between 3 and 5% makes little difference 
within a year [34].

In accordance with the principle of maximising net 
value, we use the GEKKO proposed by Beal et al. [35] to 
conduct numerical simulations to solve for the optimised 
M when maximising the net benefit.

Parameter setting
For the above SEQIRD model and cost-benefit model, 
this paper uses the IPOPT solver in GEKKO to calcu-
late the optimal solution for linear programming [35]. 
For the parameters of the SEQIRD model, we refer to 
the research of Berger et  al. [19], mainly adopting con-
clusions that are as consistent as possible in most studies. 
Of course, there are multiple variants of the coronavirus, 

(12)TCM =
(

CQi + CWi

)

TQM∈(0,1] ∗ Days,

(13)max
M

NV = TBM − TCM

(14)= (YLDs ∗ TRt + YLLs ∗ TDt )M=0Yi−(YLDs ∗ TRt + YLLs ∗ TDt )M∈(0,1]Y
i
+
(

TIM=0 − TIM∈(0,1]

)

CEi−(CQi+CWi)TQM∈(0,1]∗Days

so its epidemiological characteristics will change with 
each variation. To account for this, we categorise the 
virus variants into three major types: the initial outbreak 
of COVID-19, the Delta variant series, and the Omicron 
variant series. There are significant characteristic differ-
ences between these three series.

In addition, for the parameters of the cost-benefit 
model, different countries face different cost levels, which 
is one of the key factors driving various economic entities 
to adopt different control policies. For this, we divide the 
economic entities into high-cost and low-cost economies. 
The high-cost economy mainly includes high-income 
economic entities, while the low-cost economy mainly 
includes middle- and low-income economic entities.

We have summarised and collated the parameters esti-
mated and measured in the existing literature and set 
the model parameters in this article based on these. The 
definitions and numerical ranges of the parameters in the 
model are as follows:

 (1) Basic reproduction number R0 : according to 
existing research, we set the range of R0 to be 
between 1.4 and 24. This is mainly based on the 
large number of estimates for the basic reproduc-
tion number of the coronavirus made by scholars 
during the early outbreak in 2020. For example, 
some scholars estimated the average R0 in coun-

tries like the US and Japan to be between 3 and 5 
[36]. Estimates for R0 during the COVID-19 pan-
demic in Wuhan, China, range from 3.11 to 6.47 
[37–39], or 1.4 to 6.47 [40]. With the virus muta-
tions, some scholars have estimated the trans-
mission characteristics of the Omicron variant in 
five countries including India, Indonesia, Malay-
sia, Bangladesh, and Myanmar, and found that 
the range of reproduction number is between 0 
and 9 [41]. The range of basic reproduction num-
ber for each series of viruses is shown in Table 1.

 (2) Infection rate �I: the infection rate can be defined 
as the proportion of the exposed population that 
becomes infected, which is equal to the recipro-
cal of the average incubation period. Regarding 
the infection rate of the virus during the uncon-
trolled period in the early days in Wuhan, some 
studies found that the range of �I is between 
1/5 [28] and 1/3 [42]. With the mutation of the 
virus, the average combined incubation period is 
6.57  days, and the average incubation days vary 
among different variants. For example, the aver-
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age incubation period for cases caused by the 
Alpha variant is 5.00  days, 4.50  days on average 
for the Beta variant, 4.41  days on average for 
the Delta variant, and 3.42  days on average for 
the Omicron variant [43]. Some research has 
indicated that the incubation period for Delta 
is 4.16 ± 2.03  days, 4.85 ± 2.37  days for Omicron 
BA.1, and 4.17 ± 1.94  days for Omicron BA.2 
[44]. Accordingly, the infection rate of the virus is 
the reciprocal of the above incubation days. The 
range of incubation periods for virus is detailed 
in Table 1.

 (3) Reciprocal of infection duration γ: this is the pro-
portion of the infected population that becomes 
the recovered and dead population, represented 
as the reciprocal of the average duration of dis-
ease. Existing research estimates the range of the 
reciprocal of disease duration to be between 1/18 
[28] and 1/5 [42]. When the infection incubation 
period is around 5 days, the duration of the dis-
ease is correspondingly set at 18  days [28]. The 
range of disease duration is detailed in Table 1.

 (4) Infection fatality rate �D: there are two kinds 
of measures for infectious disease fatality rate, 
including case fatality ration (CFR) and infection 

fatality ratio (IFR) [45, 46]. When all infection 
cases can be fully identified, the value of CFR and 
IFR would be the same; otherwise, CFR will over-
estimate IFR. Some scholars have estimated IFR, 
finding that the IFR of the early virus is approxi-
mately between 0.5% and 1% [45, 46]. The infec-
tion fatality rate of the Omicron variant in India, 
Indonesia, Malaysia, Bangladesh, and Myanmar 
is estimated to be between 0.016% and 0.136% 
[41]. The range of IFR is detailed in Table 1.

 (5) Recovery rate �R: the recovery rate can be 
expressed as �R = γ − �D because the popula-
tion faces two scenarios after a certain course of 
the disease: recovery or death.

 (6) Rate of release from quarantine δ: since the virus 
incubation period is between 5 and 18 days, dur-
ing the early outbreak of COVID-19 in Wuhan, 
the isolation period was 14 days. In this study, the 
contact isolation ratio during the containment 
period is calculated as 1/14.

 (7) Disability-adjusted life years DALY s : accord-
ing to existing research, different degrees of 
disease symptoms cause different losses of 
life. According to [22], the YLLs caused by 
COVID-19 would be 14.24  years per case. 

Table 1 Parameter settings of the SEQIR model and cost-benefit model

The exchange rate is calculated at 7 RMB per USD. The per capita epidemic cost, the per capita indirect cost of isolation, and the per capita direct cost of isolation 
mainly refer to the United States and China. This is only used to indicate cost differences across economies
a https:// theco nvers ation. com/ how- conta gious- is- delta- how- long- are- you- infec tious- is- it- more- deadly- a- quick- guide- to- the- latest- scien ce- 165538
b The source of the data is the average GDP per capita value of high-income countries in 2021 published by the World Bank. https:// data. world bank. org. cn/ indic ator/ 
NY. GDP. PCAP. CD? locat ions= XD& most_ recent_ value_ desc= true
c The source of the data is the average GDP per capita value of upper-middle-income countries in 2021 published by the World Bank.https:// data. world bank. org. cn/ 
indic ator/ NY. GDP. PCAP. CD? locat ions= XO
d According to the average hourly wage data for 2021 published by the U.S. Bureau of Labor Statistics, the rate is approximately $30 per hour. In this study, we 
calculate daily wages based on an 8-h workday. https:// www. bls. gov/ ces/ data/ emplo yment- and- earni ngs/ 2021/ summa rytab le_ 202112. htm

Panel A
COVID-19 Delta Omicron Range

R0 1.4~6.49 [40]
3 [50]

5.0~7.23 [51]
6.4 [50]

0~9 [41]
5.5~24 [52]
9.5 [50]

1.4~24

1/�I(day) 3~5 [28, 42]
5 [53]
6.8 [50]

2.13~6.19 [44]
3.9~5 [51]
3.7 [53]
5.8 [50]

BA.1: 2.48~7.22
BA.2:2.23~6.11 [44]
3 [50]

2~7.22

1/γ(day) 5~18 [28, 42] 8~10a

11.3 [50]
11 [50] 5~18

�D 0.005~0.01 [45, 46] 0.00071~0.002 [54] 0.00016~0.00136 [41] 0.0001~0.01

Panel B
Group High control cost economy (High-income economy) Low control cost economy (Upper-middle-income 

economy)

 Yi USD$ 48,225.2b (RMB: 33,7576) USD $10,828c (RMB: 75,796)

 CEi USD$3,045 (RMB:21,315) [15] USD $3,192.76 (RMB: 22,061.9) [48]

 CWi USD $240/per  dayd (RMB:1680) ¥272/per day [22]

 CQi USD $355/per day [49] (RMB:2485) ¥734.08/per day [48]

https://theconversation.com/how-contagious-is-delta-how-long-are-you-infectious-is-it-more-deadly-a-quick-guide-to-the-latest-science-165538
https://data.worldbank.org.cn/indicator/NY.GDP.PCAP.CD?locations=XD&most_recent_value_desc=true
https://data.worldbank.org.cn/indicator/NY.GDP.PCAP.CD?locations=XD&most_recent_value_desc=true
https://data.worldbank.org.cn/indicator/NY.GDP.PCAP.CD?locations=XO
https://data.worldbank.org.cn/indicator/NY.GDP.PCAP.CD?locations=XO
https://www.bls.gov/ces/data/employment-and-earnings/2021/summarytable_202112.htm
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YLDs are summed for mild, severe, and criti-
cal illnesses. To compare the results more intui-
tively in this paper, we calculated the weighted 
average YLDs for the above three symptoms 
according to the parameters in table  1 of Zhao 
et  al. [22], namely 

∑

proportion of casen∗

disability weightn ∗ duration of casen = 0.815 ∗ 0.01∗

0.04 + (0.138+ 0.047) ∗ 0.53 ∗ 0.12 = 0.01.4 Fur-
thermore, some research has indicated that 
COVID-19 may leave certain sequelae, and 
the life years loss caused by sequelae of the dis-
ease per person in  Zhao et  al. [22] research is 
∑

disability weightn ∗ duration of casen = 0.17∗

0.25 = 0.0425 . Therefore, the YLDs are set as 
0.0525 per case in the simulation data.

 (8) Per capita output Y i: this indicator refers to the 
economic loss of disability-adjusted life years, 
measured here by gross domestic product (GDP) 
per capita [22]. Since the measurement of the 
value of life is more controversial as well as influ-
enced by different values, this paper only analy-
ses the economic loss due to health loss from the 
economic perspective, which also reflects the 
relative evaluation of the value of life. Different 
economies have different GDP per capita, which 
can be classified as high income, upper-middle 
income, lower-middle income, and low income 
according to World Bank statistics. The global 
average per capita GDP was $12,236 in 2021. This 
study selects high-income economies and upper-
middle-income economies both above and below 
this average as the two typical objects for com-
parison in the cost-benefit model.

 (9) Per capita epidemic cost CEi:CEi is defined as 
the direct medical costs per case. Wage loss due 
to illness is already expressed in Yi , so it is not 
double-counted here. High-income economies 
usually have different direct medical costs of 
epidemics with other income-level economies, 
i.e. upper-middle income, low income econo-
mies. For instance, existing research suggests that 
the range of average medical costs for different 
COVID-19 symptoms (general care, inpatient 
care, critical care patients) in the United States 
is approximately $9,763–$61,168 per case [47], 

with a national average medical cost $3,045 per 
case [15]. For other upper-middle-income econo-
mies like China, the weighted treatment cost for 
severe, moderate, and mild confirmed COVID-19 
cases is ¥22,061.94 (USD $3,192.76) per case [48].

 (10) Direct cost per capita of quarantine CQi: For 
upper-middle-income economy, existing 
research by Jin et al. [48] found that the average 
direct medical cost of managing the quarantined 
population is ¥584.08 (USD $84.53) per person, 
which includes case identification, testing, and 
medical observation during isolation. The direct 
non-medical cost includes fees for isolation sites. 
The per capita isolation cost for those testing 
negative is ¥150 (USD $21.4) per person per day 
[48]. Therefore, the per capita direct cost of isola-
tion is the sum of the direct medical cost and the 
direct non-medical cost, averaging ¥734.08 (USD 
$104.87) per person per day. In high-income 
countries like the United States, the direct non-
medical cost of managing the isolated population 
in alternative care sites is $304 per person per 
day5 [49], and the testing cost is $51 [49], which 
totals $355.

 (11) Indirect cost per capita of quarantine CWi : there 
is a significant difference in indirect costs between 
high-income and lower-middle-income coun-
tries. We use the average daily wage per capita to 
express the indirect losses of isolated personnel. It 
is important to note that the indirect losses experi-
enced by isolated individuals may differ depending 
on their occupation and income level.

 (12) Quarantine duration per capita Days: the num-
ber of days of quarantine varies at different stages 
of the epidemic. The government mandates an 
average of 14  days of isolation for quarantined 
people [48].

COVID-19 has gone through variants like D614G, 
Beta, Delta, and Omicron. We list the features of virus 
strains at different periods below according to exist-
ing studies (see Table  1), such as reproduction number, 
incubation period, duration of illness (proportion corre-
sponding to the transition to the recovered and deceased 
population), and infection fatality rate.

4 The calculation formula for YLDs refers to the algorithm provided by 
WHO: “YLDs were developed from a simple disease model indicating likely 
sequelae. YLD = I*DW*L, where I is the number of incident cases per year, 
DW is the disability weight and L the average duration of the disease until 
remission or death in years. This incidence based approach was the method 
undertaken in the present study.” https:// www. who. int/ data/ gho/ indic ator- 
metad ata- regis try/ imr- detai ls/ 4647#: ~: text= YLDs% 20were% 20dev eloped% 
20from% 20a% 20sim ple% 20dis ease% 20mod el,the% 20dis ease% 20unt il% 
20rem ission% 20or% 20dea th% 20in% 20yea rs.

5 In the report of Baggett TP, et al. (2020), the daily cost of alternative care 
sites is USD$304, the daily cost of temporary housing is USD$141. In our 
SEQIRD model, it simplifies the assumptions about the quarantine popu-
lation and does not distinguish between infected and non-infected popula-
tions for the quarantine population. The purpose of setting up an isolated 
population is to calculate how many susceptible people will briefly drop out 
of the virus transmission pathway due to isolation. Therefore, isolated popu-
lations need not only temporary housing, but also alternative care sites. We 
set the direct non-medical cost by assuming that all isolated populations 
require varying degrees of care space needs, resulting in a cost of $304.

https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4647#:~:text=YLDs%20were%20developed%20from%20a%20simple%20disease%20model,the%20disease%20until%20remission%20or%20death%20in%20years
https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4647#:~:text=YLDs%20were%20developed%20from%20a%20simple%20disease%20model,the%20disease%20until%20remission%20or%20death%20in%20years
https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4647#:~:text=YLDs%20were%20developed%20from%20a%20simple%20disease%20model,the%20disease%20until%20remission%20or%20death%20in%20years
https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4647#:~:text=YLDs%20were%20developed%20from%20a%20simple%20disease%20model,the%20disease%20until%20remission%20or%20death%20in%20years
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In accordance with Panel A of Table  1, the initial 
virus had less ability to spread relative to mutant strains 
such as Delta and Omicron, but the mortality rate was 
much higher than that of other mutant strains; this is 
due to both the decrease in lethality during the muta-
tion of the virus itself and the implementation of vacci-
nation programmes in various countries. The trends in 
the evolution of epidemiological characteristics can be 
summarised as follows. Firstly, the basic reproduction 
number increases with virus variation and the incuba-
tion days become relatively shorter, which indicates that 
the infection rate is increasing with variation and the 
transmission rate is also increasing. Secondly, the dis-
ease duration gradually decreases. Thirdly, the mortality 
rate of infection decreases with variation, vaccine, and 
treatment.

In addition, various economies face different cost levels 
for prevention and control, especially for economies with 
different income levels. In this regard, this paper estab-
lishes two sets of initial values (see Panel B): One group 
consists of high-income economies with high COVID-19 
epidemic prevention and control costs, represented by 
the United States in Panel B; the other group consists of 
upper-middle-income economies with low COVID-19 
epidemic prevention and control costs, represented by 
China in Panel B. We investigate how the optimal inten-
sity of COVID-19 control policies in economies with 
different cost levels changes with the evolution of virus 
transmission characteristics.

All economies face changes in virus transmission char-
acteristics. We limit these changes to two scenarios. The 
first is based on the initial virus transmission charac-
teristics of relatively low reproduction numbers, a long 
incubation period, a long infection period, and a high 
mortality rate. The second scenario is based on the trans-
mission characteristics of variants like Delta and Omi-
cron. This scenario is characterised by relatively high 
reproduction numbers, a short incubation period, a short 
infection period, and a low mortality rate.

For the first scenario (Scenario 1), which has rela-
tively low reproduction numbers, a long incubation 
period, a long infection period, and a high mortality 
rate, we set the initial values as follows: a basic repro-
duction number of 3, an incubation period of 6.5 days, 
an infection period of 18 days, and a mortality rate of 
0.01. Based on this, while keeping other parameters 
constant, we adjust one parameter within the variable 
range set by Table 1. We then analyse how the degree of 
pandemic control in different economies changes with 
that parameter.

For the second scenario (Scenario 2), characterised by 
relatively high reproduction numbers, a short incubation 

period, a short infection period, and a low mortality 
rate, we set the initial values as follows: a basic repro-
duction number of 9.5, an incubation period of 3  days, 
an infection period of 11  days, and a mortality rate of 
0.0001. Similarly, while keeping other parameters con-
stant, we adjust one parameter within the variable range 
set by Table 1. We then analyse how the degree of pan-
demic control in different economies changes with that 
parameter.

Results
M and basic reproduction number
Scenario 1 with transmission characteristics of initial virus
Keeping parameters such as the long incubation period, 
long infection period, and high infection fatality rate 
constant, we randomly select 20 points within the range 
of 1.4 ~ 24 for the basic reproduction number R0 ; this is 
done to simulate the evolution of the basic reproduction 
number. Based on this, we use GEKKO to simulate and 
solve the dynamic path of COVID-19 transmission under 
the SEQIRD model; this is to solve for the M value at the 
time of cost-benefit model optimisation under a specific 
R0 value. As shown in Fig. 2, the results support that for 
both high-cost and low-cost economies, when facing 
a virus with long incubation, long infection period, and 
high mortality, the optimal control policy is M = 0 (com-
plete release) only when the basic reproduction num-
ber is very small. Apart from this, regardless of how R0 
evolves, M = 1 (strict control) is the optimal choice for 
these two types of economies; this also means that for 
the initial transmission characteristics of COVID-19, the 
optimal policy choice for relevant governments is strict 
control.

Scenario 2 with transmission characteristics of variants
Keeping parameters such as short incubation period, 
short infection period, and low infection fatality rate 
constant, we also select 20 points uniformly at ran-
dom within the range of 1.4 ~ 24 for the basic repro-
duction number. Through GEKKO simulation to solve 
the SEQIRD and cost-benefit models, the results indi-
cate that high-cost and low-cost economies present 
two extremely different optimal control strategies (see 
Fig. 3 for details). For high-cost economies under con-
ditions of short incubation, short disease course, and 
low mortality, the optimal choice of control policy 
remains M = 0 with the evolution of the basic repro-
duction number R0 . However, the optimal choice for 
low-cost economies is to choose the strictest control, 
that is, M = 1 , when R0 > 1.4 . This indicates that as 
the virus becomes more infectious but the mortal-
ity rate decreases, strict control policies lose their 
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cost-effectiveness in high-cost economies, though they 
can still maintain a positive net income in low-cost 
economies.

M and incubation period
Scenario 1 with transmission characteristics of initial virus
Keeping the parameters of a relatively low basic repro-
duction number, a long infection period, and a high mor-
tality rate constant, we adjust the incubation period. We 
simulate the SEQIRD model and cost-benefit model to 
find the optimal control policy for different incubation 
periods. The results demonstrate that the strictest control 
policy is the optimal choice for both high- and low-cost 
economies (Fig. 4). This indicates that for infectious dis-
eases with a high mortality rate, a long infection period, 
and a certain reproduction number, strict control in the 

early stages of the outbreak can maximise the benefits of 
epidemic control and avoid more loss of life.

Scenario 2 with transmission characteristics of variants
When maintaining parameters of relatively high basic 
reproduction number, short disease duration, and low infec-
tion fatality rate, as the incubation period changes from 
2 days to 7.22 days, the optimal control intensity choices of 
economies at different cost levels have different results com-
pared to Scenario 1. The results in Fig. 5 show that for high-
cost economies facing high basic reproduction numbers, 
short disease durations, and low mortality rates, the optimal 
control policy is no mandatory quarantine and complete 
liberalisation of social activities even if the virus incubation 
period changes. For low-cost economies, maintaining strict 
control can still achieve the optimal net benefit.

Fig. 2 The trend of M’s optimal value with R0 for scenario 1

Fig. 3 The trend of M’s optimal value with R0 for scenario 2
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M and infection duration
Scenario 1 with transmission characteristics of initial virus
While keeping the parameters of a relatively low basic 
reproduction number, a long incubation period, and 
a high mortality rate constant, we change the infec-
tion duration of COVID-19. The range of change is 5 to 
18 days. For both high and low cost economies, the simu-
lation results suggest that choosing the strictest control 
policy is the optimal choice for both types of economies 
(Fig.  6). In the early stages of the COVID-19 outbreak, 
the virus characteristics met the criteria of a relatively 
low basic reproduction number, a long incubation period, 
a high mortality rate, and a relatively long disease dura-
tion. Accordingly, all national economies choose strict 
controls to prevent a widespread outbreak of COVID-19 
and avoid mass deaths.

Scenario 2 with transmission characteristics of variants
Maintaining the parameters of relatively high basic 
reproduction number, short incubation period, and 
low mortality rate, we change the infection duration of 
COVID-19 for dynamic simulation of the SEQIRD and 
cost-benefit models. Similar to the results of Scenario 
2 with transmission characteristics of variants of  sec-
tion  M and incubation period, high-cost economies in 
this scenario are more likely to choose a completely non-
isolation policy (Fig. 7). We believe this may be because 
the IFR of COVID-19 has dropped significantly, mak-
ing the net benefit of strict control unable to cover the 
cost of quarantining impacted individuals. However, for 
low-cost economies, the cost of control is lower. The net 
benefit of strict control can still cover the control costs, 
and thus the simulation results lean more towards strict 
control.

Fig. 4 The trend of optimal M values with incubation values for scenario 1

Fig. 5 The trend of optimal M values with incubation values for scenario 2



Page 13 of 19Yang and Qi  Globalization and Health           (2023) 19:95  

M and infection fatality rate
Scenario 1 with transmission characteristics of initial virus
Keeping the parameters of a relatively low basic repro-
duction number, a long incubation period, and a long 
infection period constant, we change the infection fatal-
ity rate of COVID-19. The range of change is from 0.0001 
to 0.01. Dynamic simulation results indicate that when 
the infection mortality rate exceeds a certain threshold, 
the control policies of high-cost economy tend to be the 
strictest (Fig. 8). The strategy of low-cost economy always 
leans toward the strictest control.

Scenario 2 with transmission characteristics of variants
When faced with a scenario of a relatively high basic 
reproduction number, a short incubation period, and a 
short infection period, dynamic simulation results reflect 
a similar policy choice tendency for high-cost economy 
to Scenario 1. Low-cost economy also tends to adopt the 

strictest control strategies, suggesting that changes in 
mortality rates are key factors affecting control costs and 
strategies in different economies (Fig. 9).

Adjusted model incorporating extra economic costs 
of control policy
The results of the M and basic reproduction number, M 
and incubation period, M and infection duration and M 
and infection fatality rate sections evidence that, under 
the premise of maximising net value, the control policy 
of low-cost economy tends to favour strict control in all 
scenarios except when the basic reproduction number 
is particularly low. The main reason for this result is that 
the existing cost-benefit model only considers the dead, 
infected, and quarantined populations but does not 
yet consider extra burdens on the remaining suscepti-
ble population. These burdens include the extra burden 
of self-protection and the negative impact of economic 

Fig. 6 The trend of optimal M values with infection duration for scenario 1

Fig. 7 The trend of optimal M values with infection duration for scenario 2
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stagnation caused by isolation and strict control. Deci-
sion-making in low-cost economy would change if these 
extra costs were factored into the cost-benefit model. We 
further discuss this matter in this section.

In constructing the cost-benefit model, if we further 
consider the economic losses incurred by the remaining 
susceptible population due to control policies, such as 
business closures, unemployment, and other economic 
stagnation [55], we should add an extra cost parameter 
Cextra to Eq. (13). This parameter is influenced by a vari-
ety of factors such as the value of M, the duration of 
M ( T  ), macroeconomic development (GDP), and eco-
nomic structure (Structure). Different economic struc-
tures and developments will result in different social 
resilience, and therefore the extra economic loss caused 
by control policies will also vary. Consequently, we 
obtain the new Eq. (15) for net value.

s.t. Eqs. (1)–(10)
It is assumed that Cextra is an increasing function of 

M. This assumption is largely based on real-world per-
formance. As the severity and duration of the lockdown 
increases, the additional economic losses are com-
pounded by greater restrictions on population mobility, 
lower levels of economic activity and increased restric-
tions on trade flows. For example, one study found 
that a one-month total lockdown of a city would halve 
intercity truck traffic in China. A one-month block-
ade of a major city such as Shanghai would result in 
a 10 per cent drop in national real income [56]. How-
ever, society still faces economic losses during the 
pandemic, mainly in terms of the economic losses 

(15)
max
M

NV2 = NV − Cextra(M,GDP, Structure,T )

Fig. 8 The trend of optimal M values with infection fatality rates for scenario 1

Fig. 9 The trend of optimal M values with infection fatality rates for scenario 2
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caused by health life loss in Eq.  (14) when the M = 0, 
i.e. (YLDs ∗ TRt + YLLs ∗ TDt)M=0Yi , while Cextra = 0 . 
Thus, the optimal choice of M depends on the relation-
ship between NV  and Cextra(M,GDP, Structure,T ).

Based on the optimisation calculations in Results sec-
tion, we obtained the net value corresponding to each 
optimal M value as shown in Fig.  10. Since the popula-
tion numbers obtained from the SEQIRD model are all 
represented by proportions, the net value obtained from 
the cost-benefit model is the weighted net value per cap-
ita. Figure 10, when M = 0, the net income of all econo-
mies is close to 0. If Cextra = 0 , thus NV2 is also close to 
0. However, when M = 1, the net value of all economies 
is positive in Fig.  10. If Cextra is greater than NV when 
M = 1, then NV2 is less than zero, or less than the value 
when M = 0. As such, M = 1 will no longer be the optimal 
choice for those economies.

Taking M and basic reproduction number section as 
an example, regardless of scenario 1 or scenario 2, the 
net value of the optimal control policy of the low-cost 
economy is positive. In scenario 1, NV is around RMB 
¥100,000 per capita, and in scenario 2, NV is less than 
RMB ¥7,000 per capita, as shown in Panel A of Fig. 10. 
If the Cextra caused by strict control policies is greater 
than the aforementioned net value, the strict control of 
the low-cost economy will lose its cost-effectiveness. At 
this point, the optimal policy needs to return to complete 
relaxation to achieve the maximisation of net value.

Looking back at the policy practises of various coun-
tries during the pandemic, as strict control policy con-
tinues, unemployment rates and trade stagnation will 
continue to rise, and various businesses will face further 
problems such as capital chain and supply chain dis-
ruptions. Although the government will introduce cor-
responding market rescue policies, national funds are 
limited, and they cannot cover every group, which may 
exacerbate inequality.

Discussion
Based on the simulation results in M and basic repro-
duction number, M and incubation period, M and infec-
tion duration, M and infection fatality rate and Adjusted 
model incorporating extra economic costs of control 
policy sections, we find the following aspects worthy of 
further discussion.

(1) For the initial outbreak of the COVID-19 virus (sce-
nario 1), which is characterised by a relatively low 
reproduction number, a long incubation period, an 
extended infection period, and a high fatality rate, 
both high-cost and low-cost economies have a rea-
son to implement the most stringent lockdown to 
maximise net benefits. In practice, countries did 

Fig. 10 The optimal M values and their corresponding net value (net 
value of all subgraphs in RMB)
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adopt stricter precautionary measures in the early 
stages of the COVID-19 pandemic. The term “early” 
mainly refers to the outbreak of COVID-19 in dur-
ing 2020. To illustrate, Porcher’s [57] national policy 
statistics reveal that the COVID-19 virus was pre-
dominantly in locations like Asia, where strict pre-
cautionary measures were enforced, before April 
2020. However, as the virus progressed, interven-
tions in Europe and the United States became 
stricter by approximately September 2020.

(2) As COVID-19 continues to mutate, its transmis-
sion characteristics change (scenario 2) to relatively 
high reproduction numbers, a short incubation 
period, a short infection period, and a low mortal-
ity rate. In terms of characteristics, although the 
rate and extent of transmission have increased, 
the short infection period and low mortality rate 
make the strictest control no longer optimal for 
high-cost economies, especially as vaccines become 
more widely available, and relaxation of restrictions 
will be optimal. For low-cost economies, however, 
tight control still maintains a positive net benefit, 
and thus there is an incentive to choose the tight-
est intervention at a later stage. This explains why, 
in practice, high-income countries or regions such 
as the United States and Europe have generally 
adopted a policy of gradual relaxation of restric-
tions in the late stages of the 2021 pandemic [58, 
59]. Middle-income countries such as China, on the 
other hand, still chose to implement a strict con-
trol policy [58]. Hale T., et al. [58] show that China 
implemented a “zero COVID” approach in 2022. 
This policy model involves a dynamic and rigorous 
approach to prevention and control at each wave of 
an outbreak, requiring extensive nucleic acid test-
ing, sentinel blockades, and epidemiological inves-
tigations. The policy target was “dynamic clearance 
instead of zero infection, aiming to maximise early 
detection, early treatment, and early disposal and 
resolutely prevent the continuous spread of the epi-
demic in communities”.

(3) We find that mortality plays an important role in the 
policy choices of high-cost economies. Based on the 
comparison of the results of Scenario 1 with trans-
mission characteristics of initial virus and Scenario 
2 with transmission characteristics of variants in M 
and infection fatality rate  section, high-cost econo-
mies tend to choose the most stringent interventions 
if the infection fatality rate is very high, both in the 
early stages of the outbreak and in the late stages of 
the virus’ mutation. In practice, in the late stages of 
the COVID-19 outbreak, when the infection fatal-
ity rate of the virus is much lower, the high-cost 

economies (generally high-income economies) are 
to opt for a full liberalisation of prevention and con-
trol policies. For them, at low infection fatality rate, 
with increased treatment technologies and vaccina-
tion coverage, the costs (including isolation direct 
costs, isolation indirect costs, etc.) from prevention 
and control will exceed the total benefits, and thus 
full liberalisation will be optimal. And according to 
our data, middle-income economies usually face 
relatively lower costs of prevention and control than 
high-income economies, such as fewer lost wages, 
lower isolation costs, etc., and they are able to main-
tain strict control policies for a longer period of time.

(4) On the basis of the basic model, we further explore 
the extra cost of control policy. We find that as the 
pandemic evolves, the net benefits of high-cost 
economies approach zero, while low-cost econo-
mies do not. For low-cost economies, as shown 
in Fig.  10, in scenario 2, the net benefit is mostly 
around 6,000 yuan per capita when the extra eco-
nomic loss from the lockdown is not considered. If 
the extra economic loss is more than 6,000 yuan, 
then the ease of the lockdown would be the opti-
mal policy. According to existing research, a one-
month lockdown policy on Shanghai in 2022 alone 
could lead to a 10 per cent average reduction in 
national real income [56], about 3,000 RMB.6 If 
multiple lockdowns are imposed on multiple cit-
ies, the losses will be even greater. This can also be 
evidenced from other studies. Some studies have 
concluded that the impact of stringent restrictions 
on GDP is much larger than the number of COVID 
deaths [60]. Moreover, COVID-19 deaths have a 
greater impact on GDP in advanced economies 
than in emerging markets and developing econo-
mies [60]. Indeed, middle-income economies such 
as China, which in the later stages of the pandemic 
outbreak were less resilient than they had been dur-
ing the first round of infections, although they were 
able to implement a lockdown policy at lower cost 
than high-income economies [56].

In addition, the previous discussion is focused on 
mean costs and it does not take into account variations 
in the economic structure of countries. For instance, if a 
nation’s economy is systematically compatible with the 
lockdown policy, it incurs fewer economic damages and 
encounters lower supplementary expenditures during the 

6 According to China’s National Bureau of Statistics, China’s per capita dis-
posable income in 2022 will be RMB 36,883. Available at: http:// www. stats. 
gov. cn/ sj/ zxfb/ 202302/ t2023 0203_ 19017 15. html

http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901715.html
http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901715.html


Page 17 of 19Yang and Qi  Globalization and Health           (2023) 19:95  

embargo policy. Then, it is probable that a rigorous lock-
down policy could be sustained for an extended duration. 
If a country’s economic structure is better suited for pop-
ulation movements or foreign trade, it is more likely to be 
able to lift the lockdown policy. This is because the coun-
try would face higher economic losses and additional 
costs under an embargo policy. Naturally, this structural 
adaptation changes over time as the duration of the lock-
down policy expands. Additionally, various economic 
structures can support it for different durations, leading 
to an unsynchronized relaxation timing. Some studies 
have found that industries whose economic production 
and activities are less dependent on population mobil-
ity are more resilient under strict mobility controls [55]. 
Rationalisation of industrial structure has an uplift-
ing effect on urban resilience [61]. Organisational resil-
ience also affects the economy’s ability to recover from 
a COVID-19 pandemic shock [62]. Therefore, to reduce 
the economic impact of the pandemic and control poli-
cies, countries around the world need to continuously 
increase their economic resilience, social resilience, envi-
ronmental resilience, infrastructure resilience and insti-
tutional resilience.

The limitations of this paper mainly relate to two 
aspects. The first is that in the calculation of costs, we 
did not specifically quantify the additional control costs 
suffered by susceptible groups besides the infected 
population, such as economic losses brought about by 
economic stagnation. This point involves many issues 
of macroeconomics that require further in-depth dis-
cussion. Moreover, the main purpose of this paper is 
to propose a model for optimal policy selection in pub-
lic health emergencies based on cost-benefit analysis, 
simulating the impact of the main variable changes on 
the optimal policy choice. The second is that this paper 
only uses the per capita weighted average cost-benefit 
for model simulation without considering the popula-
tion scale and structure of the economy. The main rea-
son is that, in this model, population size does not affect 
the results. Additionally, to compare the cost-benefits 
of countries with different cost levels, consistency must 
be maintained in units for a more intuitive comparison. 
When subsequently analysing the real economic loss 
of the non-infected population from a macroeconomic 
perspective, the population scale needs to be further 
considered, requiring us to optimise the model in more 
detail.

Conclusion
In this study, we constructed a cost-benefit model 
of COVID-19 prevention and control policies based 
on epidemic transmission and used numerical simu-
lations to analyse the differences in policy choices 

among countries with different income levels. Firstly, 
the study discovered that both high-cost and low-cost 
countries mostly opted for strict lockdown measures in 
response to the characteristics of early-stage viruses. 
Viewing early viruses from a virus transmission stand-
point, higher mortality rates and longer transmission 
cycles occurred, making quarantine policies a way to 
avoid the economic losses associated with large num-
bers of deaths in the population. Secondly, consider-
ing the features of virus transmission subsequent to 
mutations − faster virus transmission and lower mor-
tality rates − high-cost countries usually ease restric-
tions, whilst low-cost countries tend to impose stricter 
embargoes. Thirdly, considering the extra economic 
costs of the restriction policy, we find that relaxation is 
also the optimal policy for low-cost countries in the late 
stages of the pandemic.

The conclusions have significant implications for pol-
icymakers. When making policy decisions concerning 
the prevention and control of public health emergen-
cies in a country, the government should choose poli-
cies dynamically, taking full account of factors such as 
characteristics of virus transmission, economic struc-
ture of a country, life and health benefits of policies, 
and economic costs of policies. In the age of big data 
and the thriving development of digital technology, 
public health policymakers can build a cost-benefit big 
data model based on their own country’s data. Such a 
model will facilitate the real-time prediction of the 
health and economic benefits that prevention and con-
trol policies may yield in the short and long term.

In terms of costs, the costs of prevention and con-
trol policies play a key role in policy decision-making. 
Policy costs include not only direct costs, but also indi-
rect extra economic costs. This, in turn, determines the 
feasibility of implementing lockdown policies, particu-
larly in countries with unstable economic structure and 
industrial system heavily reliant on population mobility. 
The policy’s maintainability will be severely impacted, 
henceforth future public health policymaking must 
consider both the resilience of the public health sys-
tem and that of the country and region’s economy and 
environment. It is critical for researchers to conduct 
a detailed investigation into the economic structure 
that can exhibit more resilience in the face of epidemic 
shocks. This is imperative for effectively responding to 
new public health challenges in the future.
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