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Abstract 

Background: Claims of inconsistency in epidemiological data have emerged for both developed and developing 
countries during the COVID-19 pandemic.

Methods: In this paper, we apply first-digit Newcomb-Benford Law (NBL) and Kullback-Leibler Divergence (KLD) to 
evaluate COVID-19 records reliability in all 20 Latin American countries. We replicate country-level aggregate informa-
tion from Our World in Data.

Results: We find that official reports do not follow NBL’s theoretical expectations (n = 978; chi-square = 78.95; 
KS = 4.33, MD = 2.18; mantissa = .54; MAD = .02; DF = 12.75). KLD estimates indicate high divergence among coun-
tries, including some outliers.

Conclusions: This paper provides evidence that recorded COVID-19 cases in Latin America do not conform overall 
to NBL, which is a useful tool for detecting data manipulation. Our study suggests that further investigations should 
be made into surveillance systems that exhibit higher deviation from the theoretical distribution and divergence from 
other similar countries.

Keywords: Public health surveillance, Data reliability, Newcomb-Benford law, Kullback-Leibler divergence, Latin 
America

Introduction
The SARS-CoV-2 virus has infected almost 630 million 
people worldwide, and caused approximately 6,5 mil-
lion deaths as of November 2022 [1]. Unlike previous 
outbreaks, a distinguishing feature of the COVID-19 
epidemic is the unprecedented availability of data [2–4]. 
However, since the beginning of the SARS-CoV-2 pan-
demic, much concern has been raised about the epide-
miological estimates reliability [5, 6].

Several political leaders challenged the accuracy of 
COVID-19 reports. In the U.S., the current leading coun-
try in total death toll (more than 1 million fatalities as 

of November 4, 2022), former President Donald Trump 
repeatedly accused China of data manipulation [7]. In 
Brazil, the 2nd leading nation in absolute number of 
deaths (close to 690,000 as of November 4, 2022), Presi-
dent Jair Bolsonaro accused state governors of falsifying 
data to trick the population and extract public resources 
[8].

Following Silva and Figueiredo Filho [9], Balashov, Yan 
and Zhu [10], Koch and Okamura [7], and Kilani and 
Georgiu [11], this paper applies first-digit Newcomb-
Benford Law (NBL) to evaluate the reliability of the 
records for COVID-19 cases in all 20 Latin American 
countries. NBL states that the first digit is not uniformly 
distributed in several naturally occurring collections 
of numbers. Therefore, many empirical studies use the 
deviation from NBL as a measure of data reliability [9, 10, 
12–16].
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We also employ Kullback-Leibler Divergence (KLD) to 
compare the asymmetry among COVID-19 data reports 
[14]. Originally proposed by Kullback and Leibler [17], 
KLD is a widely used method from information theory to 
estimate the similarity between two probability distribu-
tions P and Q, and it is calculated by the logarithmic differ-
ence between the both probabilities. More recently, several 
studies have used KLD to detect anomalous observations 
[18, 19].

We focus on Latin America for four reasons. First, avail-
able evidence indicates that populist political leaders react 
more slowly to COVID-19 [15] and, according to De la 
Torre: “Latin America is the land of populism” [20]. Sec-
ond, several socio-economic problems - such as low-qual-
ity health facilities and a high proportion of people living 
in slums - undermine the capacity of Latin American coun-
tries to control the spread of COVID-19 [16]. Third, skep-
ticism about official figures can lead to ineffective policy 
choices [7], and political leaders in the region are especially 
skeptical of the destructive power of COVID-19. Finally, we 
find no empirical assessment of Latin American data. Most 
studies have applied a single methodological approach - 
NBL or KLD - focusing on worldwide comparisons [11, 21] 
or on case studies [22–24]. This study advances our current 
understanding on the application of statistical tools to eval-
uate data quality and may be easily replicated to examine 
health surveillance system integrity in other countries.

Materials and methods
Data collection
In this paper, we combine first-digit NBL and KLD to 
evaluate the reliability of COVID-19 records in all 20 Latin 
American countries using information from Our World 
in Data on country-level aggregate cases [25]. By reliabil-
ity, we consider the “the extent to which an experiment, 
test or any measuring procedure yields the same results on 
repeated trials” [26].

Statistical analysis
Initially proposed by Newcomb [27] and popularized by 
Benford [28], NBL states that some digits appear more 
frequently than others. Comparatively, 1 is the most com-
mon first digit, leading 30.10% of the time, and 9 is the least 
common, with an expected frequency of 4.58% [29]. Schol-
ars compare observed data distribution with the theoretical 
expectation that the “occurrence of numbers is such that 
all mantissa of their logarithms are equally probable” [27]. 
Therefore, for the first digit,

(1)P(d) =
1+ d

d
for d ∈ {1, .., 9}

Where P(d) gives the probability of a given number 
occurring as the first digit. According to Hill [30], “this 
law implies that a number has leading significant digit 1 
with probability  log10 2 ≅ .301, leading significant digit 2 
with probability  log10 3 ≅ .176 and so on monotonically 
down to probability .046 for leading digit 9”. NBL has 
been used as a forensic tool to detect data irregularities 
in several fields, such as religious activity [31], scientific 
data [32], socio-economic datasets [33], electoral pro-
cesses [34], international trade [35], and academic mis-
conduct [36]. In epidemiological data, deviations from 
NBL may be associated with inadequate capacity in sur-
veillance systems or intentional fraud [13].

According to Nigrini [13], in order to apply Benford’s 
Law to a given dataset, the data must form a geometric 
sequence or a number of geometric sequences for the 
digit pattern to conform to the NBL. In the context of 
COVID-19 data, the exponential growth of SARS-CoV-2 
infections mets this assumption [37].

To ensure more reliable findings, we employ three 
goodness of fit tests (Pearson chi-square, Kolmogorov-
Smirnov D statistic, and Chebyshev distance m statistic) 
and three conformity estimates (average mantissa, mean 
absolute deviation, and distortion factor). In this manner, 
we diminish the likelihood that our results are driven by 
any specific statistical technique.

The chi-square test assesses the adherence of a data set 
to Benford’s Law by comparing the actual and expected 
counts for all digits. The Kolmogorov-Smirnov (KS) 
test is strongly influenced by the first and second digits 
of the numbers and evaluates the conformity of a data 
set to Benford’s Law by taking into account all the dig-
its and their actual and expected counts [13]. According 
to Druica, Oancea and Vâlsan [38], Chebyshev distance 
(MD) informs the absolute size of the difference between 
two distributions, and it accommodates both ordinal 
and quantitative variables. The Chebyshev distance is 
similar to the Euclidean distance and it is also known 
as maximum value distance [38]. Regarding conform-
ity estimates, NBL theoretical distribution expects that 
the average mantissa should be .5 with variance 1/12 
and skewness close to zero. The mean absolute deviation 
(MAD) is based on the average absolute deviation of the 
actual proportions from the Benford proportions [13]. 
MAD takes into account the expected proportions and 
the actual proportions for each digit, but it is not influ-
enced by the size. According to Nigrini [13], observed 
values above .015 indicate nonconformity to NBL for the 
first digit test. Finally, the distortion factor (DF) model 
suggests whether data are likely to be over or underesti-
mated [13].

We complete the analysis using KLD, a well-established 
measure of directed divergence in information theory 
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[17]. Also known as relative entropy, KLD estimates how 
much information change it would take to encode a given 
distribution Q as a target distribution P. By estimating the 
directed divergence of two distributions, it is possible to 
discriminate their information and measure how similar 
they are. The notation for a continuous distribution is 
given by:

Where p(x) typically represents the true distribution 
of data and q(x) represents a theoretical or given distri-
bution from the same group. Originated in information 
theory [17], the KLD measures the expected number of 
extra bits required to code samples from p(x) when using 
a code based on q(x), rather than using a code based on 
p(x) [39]. KLD will always be a non-negative number 
without a maximum value [40]. If p(x) equals q(x), the 
measure will be 0, corresponding to similar distributions 
[41]. Figure 1 shows two pairs of distributions with differ-
ent levels of entropy measured by KLD.

Figure 1A shows two probability distributions with low 
divergence (KLD = .02), meaning that few information 
changes would be required to encode p(x1) as p(x2). Fig-
ure 1B shows two distributions with a higher divergence 
(KLD = .21). Therefore, approximating the two data dis-
tributions would entail more information change. In 
addition to comparing data from the same group, KLD 
also applies to the estimation of pairwise divergences. 
KLD has been used to study outlier detection [42], sam-
ple similarity [43], SAR images [44], copying on educa-
tional tests [45], and fake news recognition [46]. Given 
that the number of new COVID-19 cases is a count 
variable, we should estimate KLD by discrete probability 
distribution:

(2)KLD
(

P
∥

∥

∥
Q
)

=

∫

P(x)log
P(x)

Q(x)
dx

Where p(x) and q(x) are two probability distributions 
of a discrete random variable x. Mathematically, both 
p(x) and q(x) sum up to 1, and p(x) > 0 and q(x) > 0 for any 
x in X [40]. Unlike NBL, which compares data distribu-
tion with a theoretical model, KLD does not need a priori 
information on distributions. It observes the direct diver-
gences between data from similar events [14].

The reasoning to combine NBL and KLD is to 
strengthen the methodological rigor of our research 
design. While NBL is a popular tool to detect poten-
tial fraudulent activity, KLD has been used in 
empirical research to compare data sets, identify discrep-
ancies between models, and measure the relative entropy 
between two distributions. The joint application of NBL 
and KLD has been used in other research areas, such as 
image processing [47], electrical engineering [48], and 
electronics [49].

Computational tools
To estimate NBL functions, we used the benford.analysis 
package developed by Cinelli [50] and the BenfordTests 
package developed by Joenssen and Muellerleile [51], 
and to run KLD, we used philentropy package designed 
by Drost [52]. Statistical analyses were performed using R 
Statistical 4.0.4, and all significance tests were two-sided 
at conventional levels (p-value < .05).

Results
A summary of the results from both the goodness of fit 
and conformity tests for new cases in Latin American 
countries is shown in Table 1.

(3)KLD
(

P
∥

∥

∥
Q
)

=
∑

i
P(i)log

P(i)

Q(i)

Fig. 1 Comparing distributions with KLD in continuous distribution with different levels of entropy measured by KLD. A shows two probability 
distributions with low divergence (KLD = .02), meaning that few information changes would be required to encode p(x1) as p(x2). B displays two 
distributions with a higher divergence (KLD = .21)
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For all goodness of fit tests, we find significant devia-
tions from the NBL theoretical distribution for new 
COVID-19 cases in most Latin American countries 
(n = 978; chi-square = 78.95; KS = 4.33, MD = 2.18; man-
tissa = .54; MAD = .02; DF = 12.75). Only four coun-
tries had some degree of conformity: Chile (N = 959; 
× 2 = 9.59, p-value = .29; KS = 1.1, p-value = .06; 
MD = .89, p-value = .08; mantissa = .51; MAD = .01; 
DF = .56), Haiti (N = 767; × 2 = 13.68, p-value = .09; 
KS = 6.11, p-value <.05; MD = .98; p-value <.05; man-
tissa = .45; MAD = .01; DF = − 16.97), Panama (N = 820; 
× 2 = 16.52, p-value <.05; KS = 4.96, p-value <.05; 
MD = 2.16, p-value <.05; mantissa = .52; MAD = .01; 
DF = 5.51), and Peru (N = 847; × 2 = 24.52, p-value <.05; 
KS = 4.62, p-value <.05; MD = 1.89; p-value <.05; man-
tissa = .53; MAD = .01; DF = 8.16).

Figure  2 displays the KLD pairwise comparison 
among Latin American countries. The zero diagonal 
shows that a given data distribution has no direct diver-
gence to itself. Small values indicate a low divergence 
between the two countries’ case distributions. Argen-
tina to Bolivia’s KLD is 1.18, meaning that the two 
countries’ relative entropy is below Argentina’s median 

KLD which is 1.64. With few changes, it would be possi-
ble to encode data from Argentina as Bolivian records. 
But Argentina to Nicaragua’s KLD is 6.97, meaning 
that relative entropy between the two countries is sig-
nificant, being the highest value in Argentina’s pair-
wise comparison. It would be necessary to make several 
changes in the data to approximate Argentina’s data to 
records from Nicaragua. Figures  3 and 4 depict KLD 
levels across Latin American countries.

In the heatmap, the more intense the red, the higher is 
the KLD. Analyzing the heatmap, we observe an area to 
the right, where the countries are more likely to present 
low divergences. On the other side, to the left, nations 
are more likely to show higher divergence. Consider-
ing the dendrogram outside the borders of the heatmap, 
we observe which countries are less divergent from each 
other. For example, Argentina is very similar to Colombia 
(.87), and Brazil to the Dominican Republic (1.44). Some 
countries only enter clusters very late after many pairs 
are formed, such as Nicaragua, which joins the group 
only after all countries have been paired. This indicates 
that Nicaragua’s data is very divergent to the analyzed 
group, even considering pairwise comparison.

Fig. 2 KLD pairwise comparison among Latin American countries (COVID-19 new cases). Small values indicate a low direct divergence between 
the two countries’ case distributions which is highlight by red color. Larger values indicate high divergence which is emphazied by the blue color
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The higher the divergence, the more likely the case is an 
outlier. The five countries with unusual distributions, that 
have mean KLD above the 3rd quartile value of 2.9, have 
also not shown conformity in NBL tests (Fig.  4). Nica-
ragua has the highest KLD average (6.01), which means 
more divergence. This can be related to differences in 
data collection, report or even health policies.

Once we locate the divergent countries, it is important 
to explore their distribution over time and try to identify 
patterns that can relate to the divergence. The analysis of 
the distributions of the countries with high mean diver-
gence shows a pattern of recurrent days with zero new 
COVID-19 cases (Fig. 5).

The blue dots represent days with at least one new case, 
and the red dots represent days with zero new cases. 
Costa Rica, El Salvador, Honduras, and Nicaragua have a 
persistent occurrence of days with zero cases throughout 
most of the period. It is also relevant that days with many 

new cases are preceded and followed by days of zero 
cases. This trend is present especially in Nicaragua. To 
put in perspective, Nicaragua (the most divergent coun-
try), has an odds ratio of 5.87 (almost 6 days of zero new 
cases for every day with at least 1 case), El Salvador, the 
second in divergence, has an odds ratio of 1, Costa Rica 
(3rd) of .64 and Honduras (4th) of .55. We suspect that 
this pattern is due to notification delay and low testing 
rates.

Discussion
Scholarly research has explored the authenticity of 
COVID-19 figures. Using advanced statistical tools, 
Kennedy and Yam [53] show that the Chinese govern-
ment systematically fails to provide reliable data. More 
recently, Kilani and Georgiu [11] examine a sample of 
171 countries and report that most of the observations 
exhibit suspicious patterns of data sharing.
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Nicaragua
El Salvador
Costa Rica
Honduras
Paraguay
Uruguay
Cuba
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Panama
Haiti
Argentina
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Guatemala
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Bolivia
Colombia
Dominican Republic

Fig. 3 KLD heatmap across Latin American countries (COVID-19 new cases). In this plot, the more intense the red, the higher is the KLD. Analyzing 
the heatmap, we observe an area to the right, where the countries are more likely to present low divergences. On the other side, to the left, nations 
are more likely to show higher divergence. Considering the dendrogram outside the borders of the heatmap, we observe which countries are less 
divergent from each other
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This paper advances our understanding of the subject 
by applying two well-established statistical techniques 
to evaluate the reliability of COVID-19 records in Latin 
America. Under the Newcomb-Benford Law assumption, 
we find most countries deviate from theoretical expecta-
tions. Similarly, KLD estimates indicate that the accuracy 
of records is significantly heterogeneous across countries, 
including some abnormal observations, and one case 
with extreme high divergence: Nicaragua.

According to Burki [16], Nicaragua declined to close 
schools and shops for a significant period. More surpris-
ingly, it was the only country in Central America to have 
kept open borders when the rest of the world chose to 
shut down the entrance of foreign people. Conversely, 
the COVID-19 epidemiological curve has been decreas-
ing over time, which makes us doubt the integrity of 
the health surveillance system in Nicaragua. With only 
18,400 confirmed cases and 225 deaths registered by 
November 4, 2022, Nicaragua is an extreme case of unre-
liable data. These findings are supported by recent schol-
arly publication that data from autocratic regimes are less 
reliable and should be treated with more caution [10, 54].

Notification delay has been a concern in Latin America 
from the beginning [55], and is documented in differ-
ent studies [56]. According to Our World in Data, there 
is a strong positive correlation between the daily report 
of new cases and day-to-day test execution [25]. Other 
studies also find an association between daily tests per-
formed and daily notifications of new cases. The lack of 
testing affects COVID-19 tracing [57], monitoring [58], 
and evaluation [59].

Latin American countries faced severe problems in 
managing the COVID-19 crisis. In addition to the lack of 
transparency in handling and sharing data, many politi-
cal leaders downplayed the destructive power of SARS-
CoV-2. For instance, Brazilian president Jair Bolsonaro 
repeatedly denied social distancing as a preventive meas-
ure [60]. In Mexico, one of the most affected countries 
worldwide with more than 320,000 deaths on November 
4, 2022, president Andrés Manuel López Obrador called 
COVID-19 “not even as bad as the flu” [16].

On the one hand, these results enhance our knowledge 
of statistical tools and may be easily replicated to exam-
ine epidemiological data in other countries, being able to 
monitor aspects such as notification delay. On the other, 

KLD (Mean)

1.9 − 2.0
2.0 − 2.3
2.3 − 2.6
2.6 − 3.0
3.0 − 6.0

Fig. 4 KLD map across Latin American countries (COVID-19 new cases). The darker the color, the greater the divergence level as measured by KLD. 
Nicaragua has the highest KLD average (6.0), which means more divergence
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we need to investigate how countries with such different 
social and economical characteristics (Chile and Haiti, 
for example) manage to obtain the same degree of data 
conformity. Search for which factors can produce this 
phenomenon is a challenge for future research agenda.

Our findings have significant implications for global 
and public health policy and practice. The results of the 
study provide important insights into the role of reliable 
data on evidence based public policy. The study also pro-
vides guidance for practitioners, policy makers, and other 
stakeholders regarding the best practices for detecting 
data inconsistencies. Overall, the findings of the current 
study can help to inform and shape future public health 
efforts, and can ultimately lead to better health outcomes.

Finally, the scientific examination of COVID-19 data 
is hampered by a number of weaknesses. First, data may 
not be collected accurately or consistently, leading to 
incorrect or incomplete results. Additionally, there is a 
lack of standardization across countries, which can lead 
to discrepancies between results. Finally, the data analy-
sis may be subject to bias, either from the researcher or 

from external factors. We tried to ameliorate this short-
coming by providing full access to datasets and computa-
tional scripts.

Conclusions
Valid and reliable data is key to effective public policy. 
If information is flawed, government intervention no 
longer accomplishes its desired purposes. In this paper, 
we provide evidence that COVID-19 records in Latin 
America are likely to deviate from NBL, which is a widely 
employed tool to spot data inconsistencies. In addition, 
we find high levels of heterogeneity among countries 
regarding figures reliability, according to KLD estimates. 
Nicaragua, for instance, is an example of an extreme case 
of unreliable data. A limitation of our study is the focus 
on only one specific geographical region. Future scholarly 
research can investigate the extent to which epidemio-
logical data in other periods and for different countries 
conform to the unified framework we developed by com-
bining NBL and KLD in the same reproducible research 
design.
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