Skip to main content

Table 1 Characteristics of the articles included in the review

From: Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews

Citation

Objective

Type of review

Databases searched

Years included in review

Geographic focus

Disease of interest

Degree of disease focus

Addresses climate change impacts

Addresses adaptation measures

African Region

 (Abiodun et al., 2020) [23]

To establish the major factor responsible for the recent malaria resurgence in South Africa between 2015 and 2018.

Scoping review

CINAHL, PubMed, Science Direct, SCOPUS

2015–2018

South Africa

Malaria

Primary

Y

N

 (Chersich and Wright, 2019) [16]

To assess progress with climate change adaptation in the health sector in South Africa.

Systematic review

PubMed (Medline, Web of Science

No time limits

South Africa

Malaria

Secondary

N

Y

 (Giesen et al., 2020) [24]

To assess the effects of climate change in the epidemiology of the most prevalent mosquito borne diseases and their vectors in Africa.

Systematic review

PubMed, Scopus, Embase, CENTRAL

2004–2018

African Region

Both

Secondary

Y

N

 (Mabaso and Ndlovu, 2012) [25]

To obtain a better understanding of existing research evidence towards the development of climate-driven malaria early warning systems (MEWS) in order to identify challenges and opportunities for future research.

Critical review

PubMed

1990–2009

African Region

Malaria

Primary

Y

Y

Americas

 (López et al., 2018) [26]

To analyze the distribution and abundance of publications on vector-borne diseases associated with climate variability in South America, identify those works that conducted a geographic analysis and detect the countries where outbreaks occurred and the climate variables with which they were associated.

Systematic review

Scielo, PubMed, Lilacs, Google Scholar, Scopus

1970–2016

South America

Both

Secondary

Y

N

 (Matysiak and Roess, 2017) [27]

To examine the interrelationship between climatic, ecological, social, and cultural factors on dengue transmission in Puerto Rico and to draw lessons for Zika response.

Systematic review

MEDLINE, PUBMED, SCOPUS, CINAHL

2001–2015

Puerto Rico

Dengue

Primary

Y

N

Eastern Mediterranean

 (Babaie et al., 2018) [28]

This study aimed to review the effects of climate change on malaria in Iran.

Systematic review

Cochrane, PubMed, ScienceDirect, SID, Magiran

2007–2017

Iran

Malaria

Primary

Y

N

 (Khan et al., 2018) [29]

To conduct a comprehensive compilation of dengue cases from published data and known records in the country, and use a modeling framework to understand dengue prevalence and risk.

Systematic review and meta-analysis

Science Citation Index, SciSearch, Journal Citation Reports, Medline, SCOPUS, EMBASE, Google Scholar, and others

1994–2014

Pakistan

Dengue

Primary

Y

N

 (Ahmed et al., 2016) [30]

To critically review scientific studies to assess the need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health, particularly from the Pakistani perspective.

Critical review

Google Scholar, Web of Science, Scopus, and Science Direct

1980–2016

Pakistan

Both

Secondary

Y

N

 (Ahmed et al., 2019) [31]

To assess the existing conventional and novel eradication methods and techniques, which are being used in different countries of the world to eradicate or control vectors and diseases transmitted by such vectors, and to identify missing gaps in the management of vectors, especially malaria and dengue fever, and approaches to manage increases in temperature due to a changing climate

Critical review

ISI Web of Knowledge, Science Direct, Scopus and Google Scholar

1990–2019

Pakistan

Both

Secondary

Y

Y

European

 (Brugueras et al., 2020) [32]

To identify and analyze the existing literature on the transmission of mosquito-borne diseases and those factors potentially affecting their transmission risk of them in six southern European countries with similar environmental conditions: Croatia, France, Greece, Italy, Portugal and Spain.

Systematic review

PubMed, Embase, Scopus, Web of Science, AHL Regional Portal

2000–2017

Croatia, France, Greece, Italy, Portugal and Spain

Both

Secondary

Y

N

 (Fischer et al., 2020) [15]

To assess the impact of rising temperature on the receptivity to malaria transmission in Europe and to provide an evidence base for the critical appraisal of the current state of knowledge on which health care guidelines and prevention efforts rely.

Systematic review

Embase, Medline, Cochrane Library, Scopus

Before Oct 2019

Europe

Malaria

Primary

Y

N

 (Medlock and Leach, 2015) [33]

To summarise the risks posed by vector-borne diseases in the present and the future from a UK perspective, and assess the likely effects of climate change and, where appropriate, climate-change adaptation strategies on vector-borne disease risk in the UK.

Systematic review

PubMed, Google Scholar, Web of Science

Before Oct 2014

UK

Both

Secondary

Y

Y

South-East Asian

 (Chua et al., 2019) [34]

To map out the extent of climate change and health research done in the country in order to complement the agenda-setting process and guide in identifying more specific research topics for the Philippine National Unified Health Research Agenda 2017–2022 under the Health Resiliency section.

Scoping review

PubMed/MEDLINE, Embase, Web of Science, HERDIN

1980–2017

Philippines

Both

Secondary

Y

Y

 (Dhimal et al., 2015) [35]

To review the available literature on VBDs and climate change to allow for an assessment of the likely impacts of climate change on the changing spatiotemporal distribution of VBDs in Nepal.

Systematic review

PubMed, Web of Science

Before Dec 2014

Nepal

Both

Secondary

Y

N

 (Hii et al., 2016) [14]

To review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based dengue early warning system in a dengue endemic country, taking Malaysia as a case study.

Systematic review

PubMed, Scopus, EBSCO, Web of Science, WHOLIS, WHO IMSEAR

1990–2015

Malaysia

Dengue

Primary

Y

N

Western Pacific

 (Bai et al., 2013) [36]

To summarize what is known about the impact of climate change on the incidence and prevalence of malaria, dengue fever and Japanese encephalitis in China and to provide important information and direction for adaptation policy making.

Scoping review

PubMed, Google Scholar and China Hospital Knowledge Database (CHKD)

Before 2012

China

Both

Secondary

Y

Y

 (Li et al., 2018) [37]

To summarize empirical evidences in China on the impact of climate change on dengue fever and to review the related DF incidence models and their findings on how changes in weather factors may impact DF occurrences in China.

Systematic review

Google Scholar, Web of Science/Knowledge, PubMed, Baidu Scholar, and CNKI

1980–2017

China

Dengue

Primary

Y

N

 (Filho et al., 2019) [38]

To explore the associations between climate change and human health on the one hand, and outline some of the health care challenges posed by a changing climate on the other, including the emergence of climate-sensitive infectious diseases.

Narrative

PubMed and Google Scholar, and scientific reports (IPCC, NASA, ECDC, or WHO)

2004–2019

Western Pacific Region

Dengue

Secondary

Y

Y

 (Yi et al., 2019) [39]

To examine the relationship between climate variability and infectious disease transmission in China in the new millennium.

Systematic review

Web of Science, PubMed, CNKI

2000–2018

Western Pacific Region (China)

Both

Secondary

Y

Y

 (Banu et al., 2011) [40]

To review the scientific evidence about the impact of climate change and socioenvironmental factors on dengue transmission, particularly in the Asia-Pacific region.

Scoping review

PubMed, ISI web of Knowledge and Google Scholar

1990–2009

Asia-Pacific (South-East Asia Region AND Western Pacific Region)

Dengue

Primary

Y

Y

Global

 (Akter et al., 2017) [42]

To assess the epidemiological evidence on the joint effects of climate variability and socioecological factors on dengue transmission

Systematic review

PubMed, Web of Science and Scopus

1993–2015

Global

Dengue

Primary

Y

N

 (Andersen and Davis, 2017) [43]

To gather available literature describing changes in the epidemiology of tick- and mosquito-borne diseases that cause cutaneous manifestations, which may be associated with climate change.

Scoping review

PubMed

1984–2016

Global

Both

Secondary

Y

N

 (Bardosh et al., 2017) [17]

To identify community-based interventions for VBDs with the goal of relating past approaches and lessons learnt to the context of future global change. To situate the existing community-based VBD intervention literature within the context of global change processes, the broader socioecological systems theory literature, social science knowledge and concepts of vulnerability and adaptation.

Realist review

PubMed and Google Scholar

1990–2015

Global

Both

Secondary

Y

Y

 (Cella et al., 2019) [44]

To elucidate the important aspects described in the literature on the influence of climate change in the distribution and transmission of malaria.

Narrative

PubMed and SciELO Virtual Library

1994 to 2018

Global

Malaria

Primary

Y

N

 (Naish et al., 2014) [41]

To review epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission.

Systematic Review

PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science

January 1991 through October 2012

Global

Dengue

Primary

Y

N

 (Swynghedauw, 2009) [45]

To review the medical consequences of global warming.

Systematic review

PubMed

2000–2007

Global

Both

Secondary

Y

N

 (Watts et al., 2021) [4]

To report the findings and consensus of the Lancet Countdown, an international collaboration established to provide an independent, global monitoring system dedicated to tracking the emerging health profile of the changing climate.

Narrative

N/A

Up to 2020

Global

Both

Secondary

Y

Y

 (Xu et al., 2012) [47]

To review the literature regarding the relationship between ambient temperature and children’s health and to propose future research directions.

Systematic review

PubMed, ProQuest, ScienceDirect, Scopus and Web of Science

Up to Feb 2012

Global

Malaria

Secondary

Y

N

 (Xu et al., 2020) [46]

To review available information on the projection of dengue in the future under climate change scenarios.

Systematic review

PubMed, ProQuest, ScienceDirect, Scopus and Web of Science

Up to June 2019

Global

Dengue

Primary

Y

N

 (Yu et al., 2015) [48]

To examine both key findings and methodological issues in projecting future impacts of climate change on malaria transmission.

Critical review

MEDLINE, Web of Science, and PubMed

Up to Nov 2012

Global

Malaria

Primary

Y

N

 (Zhang et al., 2008) [49]

To summarize what has been done in examining the relationship between climate change and vector-borne diseases worldwide and to give suggestions for future research directions by noting limitations in previous published work.

Systematic review

PubMed

1984–2008

Global

Both

Secondary

Y

N